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1. INTRODUCTION

Anderson and Duffin (21 have introduced the concept of "parallel

sum" of a pair of matrices and have deduced interesting and impor-

tant properties of this operation when the matrices concerned are

non-negative definite. They were led to this concept from a paral-

lel connection of "resistors" through a vectorial generalization of

Kirchoff's and Ohm's laws in which resistors become non-negative

definite linear operators. The concept of parallel sum was extended

Aand its elegance further demonstrated by Rao and Mitra (19] who

0showed that most of the properties proved by Anderson and Duffin [2]
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are indeed true for a much wider class of pairs of matrices,

designated by these authors as "parallel summable". Similar

extensions of the concept of "hybrid sum", introduced by Duffin

and Trapp (8] in analogy with a hybrid connection of resistors,

were made by Mitra and Trapp [17]. The object of this paper is

to offer a comparable extension of the notion of a shorted oper-

ator studied by Anderson [1] (3) , by Anderson and Trapp (3] and

the present authors (14]. The key point in this development is

a theorem of Anderson and Trapp which exhibits the shorted n.n.d.

matrix as the limit of a sequence of parallel sum matrices. We

also describe some applications of the shorted operator in mathe-

matical statistics.

2. PRELIMINARIES

Before we proceed any further let us record here some known

results on the parallel sum. We follow the same notation as in

our earlier paper [1].

Definition 2.1. Matrices A and B in ×n are said to be

parallel summable (p.s.[19]) if A(A + B)-B is invariant under

the choice of the generalized inverse (A + B) . If A and B

are p.s., P(A,B) = A(A + B) B is called the parallel sum of

A and B

The following theorem is proved in (19).
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Theorem 2.1. A and B are p.s. iff

M(A) c M(A + B) ,M(A*) c M(A* +B*)

or equivalently

M(B) c M(A + B) ,M(B*) c M(A* + B*)

Theorem 2.2 lists certain known properties of the parallel sum

[2,13,191.

Theorem 2.2. If A and B are p.s. matrices in Cnlxn ,then

(a) P(A,B) = P(B,A)

(b) A* and B* are also p.s. and P(A*,B*) = [P(A,B)1*,

(c) P(A,B) is n.n.d. when m = n and A,B are n.n.d.,

(d) for C of rank m in Cpxm , CA and CB are p.s.

and P(CACB) = CP(A,B)

(e) {[P(A,B)1} {A + B}

(f) M[P(A,B)] M(A) n M(B)

(g) f P is he rthoona proectr ono MA n (B*

ag) if P is the orthogonal projector onto M(A ) n M(B)

then (P(A,B)1 P*,(A + B )P

(h) P[P(A,B),CI = P[A,P(B,C)] if all the parallel sum

operations are defined.

(i) if P A and P B are the orthogonal projectors onto

M(A) and ML(B), respectively, then the orthogonal pro-

jector onto M(A) n M(B) is given by P = 2( #B

Definition 2.2. if S is a subspace of E m and A c C m the
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shorted matrix S(A) is the unique matrix in 0m such that

M[S(A)1 c S

A -- S(A)

if C Cmi A -C and M(C) c S then S(A) 2 C

The existence of S(A) was established by Anderson and Trapp[3]

Theorem 2.3. Let A,B c Cm and M(B) = S , then

S(A) = lim P (A,B)

Theorem 2.3 was proved by Anderson and Trapp for the special case

where B is the orthogonal projector (Theorem 12 [31). The gen-

eral case could be proved on same lines. Alternatively, a direct

proof could be constructed using simultaneous diagonalization of

the pair A,B of n.n.d. matrices (see e.g. Theorem 6.2.3,[191).

3. The Shorted Matrix - An Extended Concept

Let the pair of matrices A,B in Cmxn be p.s. and

lim A(XA + B) B = C (3.1)

exist and be finite.
Theorem 3.1 gives certain properties of the C matrix when

it exists.
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Theorem 3.1.

(a) C = lir B(XA + B) A (3.2)
X-0

(b) M(C) c M(A) n M(B)

M(C*) c M(A*) n M(B*)

(c) M(A - C) is virtually disjoint with $(B) and so is

M (A* - C*) with M (B*)

(d) C and A - C are disjoint matrices (121, that is

M(A) = M(C) * M(A-C)

M(A*) = M(C*) 0 M(A* - C*) (3.3)

(e) M(C) = M(A) n M(B)

M(C*) = M(A*) n M(B*) (3.4)

(f) Let E be any matrix such that M(E) c M(B),

M(E*) c M(B*) , then

Rank (A- E) a Rank (A - C)

the sign of equality holding if and only if E = C

Proof: (a). If A and B are p.s., XA and B are p.s. for

each X sufficiently small. Hence

C = lrm P(AA,B)

Since P(XA,B) = P(B,)XA) by Theorem 2.2(a), (3.2) follows.

(b). Consider a typical vector Cx in M(C)

Cx - lim YX

Where y= A(AA + B)-Bx M(A) • Since M(A) is closed,

Cx = lim y.e M(A)
~ X- 0



6.

Similarly using (3.2) we have Cx e M(B) and hence

Cx E M(A) n M(B) . The other part of (b) is established in a

like manner.

(c). Let (A - C)u = Bv be a vector in M(A - C) n M(B) . Then

Au = Cu + Bv.

Hence Cu = lir B(XA + B) Au = lim B(XA + B) (Cu + By)
X- 0 X-0-0 - -

lim B (XA + B)-Bv = lim XA(XA + B) -Cu (3.5)
X-+0 X-.'0~

Since C BK for some matrix K in Cn xm , the RHS of (3.5) is

seen to be equal to the null vector, while

B = B(XA + B) (XA + B)

for each X sufficiently small implies on taking limits of both

sides that

B = lim B(XA + B)-B

Hence Bv = 0 and the first part of (c) is established. The

proof of the second part is similar.

(d). (d) is a simple consequence of (c)..

(e). Let x c M(A) n M(B) • Using (3.3) we write

x =X l+ x2
x- 1 -2

where x, e M(C) and x2 c M(A - C) . Observe that

= - x 6 M(B) and hence e M(B) n M(A - C) . This implies

A= 02 and x = 6 1M(C) . This, in view of (b) establishes

the first part of (e). The other part is similarly deduced.

(f) In view of (c), the expression

"7-
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A- E (C- E) + (A- C)

exhibits A - E as the sum of two disjoint matrices C - E

and A - C. Hence

Rank (A - E) = Rank (C - E) + Rank (A - C)

This concludes the proof of (f) and of Theorem 3.1.

The matrix C will henceforth be called the matrix A

shorted by the matrix B and denoted by S(AIB) . Theorem

3.2 gives some more properties of the shorted matrix.

Theorem 3.2. Let S(AJB) exist. Then

(a) S(A*IB*) also exists and S(A*IB*) = [S(AIB)]*

(b) if K . Cpxm and Rank K = m, S(KAIKB) exists

and S(KAIKB) = KS(AJB)

(c) if m = n , A is n.n.d. and further

M (B) n M(A) = M(B*) n M(A) (3.6)

S(AIB) is n.n.d.

Proof: Proofs of (a) and (b) are straightforward and are omitted.

(c). Observe that by the (a) part if C = S(AIB), then

C* = S(AIB*). Further, if (3.6) holds both C and C* have

identical row and column spans. Application of theorem 3.1(f) now

shows C = C*

Choose and fix a hermitian g-inverse A of A . If for some

x, x* C x (-0,

X*CA AACX = x* C x < 0

The equality follows from the fact that A-AA- is a g-inverse of
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A and A being the sum of disjoint matrices C and A - C

every g-inverse of A is a g-inverse of C . This contradicts

the assumption that A is n.n.d., and establishes the claim in (c).

That (c) is not true in general can be seen from the follow-

ing counter example. Let I and H be the identity matrix and

mXrnan idempotent matrix in Cm  . It is not difficult to see that

S(IIH) exists and is equal to H H need not be hermitian,

and it is conceivable that a vector x might exist such that

x*H x < 0 Consider the idempotent matrix

for such a counter example.

mXmRemarks. A matrix A E C is said to be almost positive

mdefinite (a.p.d.)[7,11] if V x E E Re (X* A x) ! 0 and

x* A x = 0 = Ax = 0 Unlike n.n.d. matrices, an a.p.d.

matrix need not be hermitian. Similar to theorem 3.2(c), we

can prove that if A is a.p.d., S(AIB) exists and (3.6)

holds, then S(AIB) is a.p.d.

This can be proved as follows. Since A is a.p.d., it

follows as in Theorem 2 [11] that A is an EP mattix (that

is M(A) = M(A*)). Equations (3.4) and (3.6) therefore imply

that C = S(AIB) is EP . Further as in Corollaries 2 and 3

of [11, A+ is seen to be a.p.d. Since C is EP

C[I - A+C] = 0 = C*[I - A+C] = 0 = C* = C*A+ C

If Re (x*Cx) < 0 , then Re(x*C*x) = Re(x*C*A+Cx) < 0
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which contradicts almost positive definiteness of A+. Also,

x C x = 0 = A+ C x = 0 = Cx = 0

A matrix A E C mxm is said to be positive semidefinite (p.s.d.)

if V x E Em, Re(x* A x) 0 . When A is p.s.d. and T3.6)

holds, S(AIB) if it exists is also p.s.d. This can be proved

on similar lines.

Let the matrices A and B be p.s. and A + B be of rank

r Consider a rank factorization of A + B:

A + B =LR

and the representations

A = LDR , B = L(I - D) R (3.7)

implied by parallel summability, where D and I - D are square

rxrmatrices in C . It is easily seen that in any such repre-

sentation, the matrix D (and naturally I - D) is uniquely deter-

mined up to a similarity transformation. Theorem 3.3 gives a

necessary and sufficient condition for S(AIB) to exist.

Theorem 3.3. Let A and B be p.s., S(AIB) exists iff I - D

is of Drazin index 1, that is

Rank (I - D) Rank (I - D) (3.8)

or equivalently Rank B(A + BB = Rank B (3.9)

Proof: Without any loss of generality we assume that D is

already in Jordan canonical form, and write D as the sum of

two disjoint matrices D1 and D2 , each of order r x r where
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D is identical with D everywhere inciuding in all its

diagonal Jordan bIocks, except for the Jordan block corres-

ponding to the eigen value 1 , if any, which is replaced by

a null matrix and D2 = D - D1 . The above assumption (3.8)

implies that (I - D) is disjoint with D2 • Hence

A(XA + B)-B = LD(XD + I - D) (I - D)R

= L(D 1 + D 2) [AD 1 + (I - D) + AD 2 ](I - D)R

= LD 1 [AD 1 + (I - D) + AD2 ]-(I - D)R

= LD 1 [XD 1 + (I - D)]-(I - D)R

= LD 1R - XLD 1 [XD 1 + (I - D)]-D R

Taking limit as A - 0 we have

lim A(XA + B)-B = LD1 R

This concludes the proof of the 'if' part.

Assume now that (3.1) holds and consider the representation

A + B - (B + C) + (A - C)

where B + C and A - C are disjoint matrices. Since A and

B are p.s., B + C has the same row and column spans as that of

B Consider rank factorizations of B + C and A - C

B + C L 1IR 1

A - C L2R 2

leading to the rank factorization A + B = LR where

L = (L1  L 2) and R = (')
fR 2

If B L 1IFR 1 clearly P is nonsingular. Hence I -D =diag(F,0)
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is of Drazin index 1. The last part of Theorem 3.3 is trivial.

This concludes proof of Theorem 3.3.

Theorem 3.4. If S(AIB) is defined, then S[AIS(AIB)] is

also defined and

S[AIS(AIB)] = S(AIB) (3.10)

Proof: The proof is fairly straightforward and is omitted.

Theorem 3.5. A general solution to a g-inverse of S(AIB) is

A + Xb where A is an arbitrary g-inverse of A and Xb

is any arbitrary solution of the homogeneous equation

BXbB = 0 (3.11)

Proof: Every g-inverse of A is a g-inverse of S(AIB) . This

we have already noted while proving theorem 3.2. Consider now a

matrix A + Xb  as determined above

S(AIB)(A- + Xb) S(AIB) = S(AIB) + S(AIB)XbS(AIB) = S(AIB)

on account of Theorem 3.1(b). This shows

{A + X I c {[S(AIB)] -}

Now choose and fix a g-inverse G of A . A general solution

to a g-inverse of S(AIB) is G + Xs where Xs  is a general

solution to the homogeneous equation

S(AIB)XsS(AIB) = 0

Theorem 3.1(e) implies that any such matrix Xs can be written



12.

as Xs = X a + Xb where Xa and Xb satisfy respectively the

equations

AX aA =0 , BXbB 0

The matrix G + X E {A-} . Hence
a

{[S(AIB)-} c {A- + Xb }

Theorem 3.5 is thus proved.

Theorem 3.6. (a) If S(AIB) and S(BIA) are both defined,

then S(AIB) and S(BIA) are p.s. and

P[S(AIB), S(BIA)] = P(A,B) (3.12)

(b) {ES(AtB)]- + [S(B1A)]-} = {A- + B-} (3.13)

Proof: (a). From theorem 3.3 it is seen that S(BIA) will exist

iff Rank D2 = Rank D . Let (I - D)1 denote a matrix which is

identical with I - D everywhere except for the diagonal block

corresponding to the zero eigen value of D , which is replaced

by a null matrix. As in the proof of Theorem 3.3, it is seen that

S(BIA) = lim A(AB + A)-B = L(I - D)1 RX-0

When both S(AjB) and S(BIA) exist it is seen that D and

(I - D)1 which are both block diagonal, have nonnull diagonal

blocks at identical positions, each such nonnull pair adding up

to an identity matrix of same order as of the diagonal block

concerned. This shows that S(AIB) and S(BIA) are parallel

summable and

-.-
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P[S(AIB),S(BIA)] = LD1 (I - D) 1R = LD(I - D)R

= P(A,B)

(b). Clearly {A- + B-} c {[S(AIB)]- + [S(BIA)]-}

Conversely by theorem 3.5, [S(AIB)]- can be written as Ga + Xb

where Ga E {A-} and BXbB = 0 . Similarly [S(BIA)]- can be

written as Gb + Xa where Gb E {B-} and AXaA = 0. Hence

[S(AIB)- + [S(BIA)]- = Ga +Xb +Gb + Xa

= (Ga + Xa) + (Gb + Xb)

This shows {[S(AIB)]- + [S(BIA)]-} c {A- + B-1 which concludes

the proof of the part (b) and of theorem 3.6.

Theorem 3.7.

S[P(A,B)ICJ = P[S(AIC),BJ = PES(B)C),A] (3.14)

when the parallel sum and shorted matrices involved are defined.

Proof. Using Theorem 3.5 and Theorem 2.2(e)

{(S[P(A,B)IC])-} - {A- + B- + X c

{(P[S(AIC),B])-} = {A- + Xc + B-I

{(P[S(BIC),A])-} = {B- + Xc + A-}

This shows the three matrices in (3.14) have identical general

solutions for a g-inverse. Since a matrix is uniquely determined

by its class of g-inverses (Theorem 2.4.2, [1l]) (3.14) is estab-

lished.

The following theorem can also be proved using a similar

argument. We omit the proof.
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Theorem 3.8.

S[S(AjB)lCj - S[AIS(BIC)] = S[AIS(CJB)]
- S(AIP(B,C) (3.15)

when the parallel sum and shorted matrices involved are defined.

4. Another Approach

In view of Theorem 3.1(f), one is tempted to put forward the

following definition of the shorted matrix imitating the Anderson-

Trapp definition given in Section 2.

Let A be a given matrix in Cm xn  and S,T be given sub-

spaces in E m,En  respectively. The shorted matrix S(AIS,T) is

mxn
a matrix C in C , such that

(a) M(C) c S , M(C*) c T (4.1)

(B) if E Cm'n , M(E) c S , and M(E*) c T ,

(4.2)
then Rank (A - E) >_ Rank (A - C)

This definition however does not always lead to a unique answer.

Consider for example the matrix1 0 0)
A = U £

0 1 0

and let

1 0

S T M 0 1

0 0
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It is seen that for arbitrary scalars a and b the matrix1 0 0)
a b 0
0 0 0

satisfies the conditions required of the matrix C in the above

definition. The following theorem gives necessary and sufficient

conditions on the triplet (A,S,T) so that S(AIS,T) may exist

uniquely.

Let S and T be column spans of matrices L1 and R

respectively, and let the columns of L2 and R2* span respectively

complementary subspaces of S in Em and of T in En . We

assume that L1 ,L2 ,R1 *,R2* are of full column ranks. Let us write

A = (Ll:L2) (Wll W12 (,f
W21 W22 R2(4.3

Theorem 4.1. The shorted matrix S(AIS,T) exists and is unique

iff

M(W 21) c M(W 22) , M(W1 2 ) c M(W* 2 ) (4.4)

When (4.4) is satisfied

S(AIS,T) = L1 (WIl - W12W2 2W2 1 )R1

Proof: The required conditions are seen to be independent of

the specific choice of matrices L,L 2 R1 and R2 in the sense

that if the conditions are met for one choice, they would also

be met for an alternative choice.
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Assume now that (4.4) holds and write

A = LIWIIR1 + LIW 1 2R2 + L2W2 1 R1 + L2W22R 2

= LI(W1 I - W12W 2W21 )R1 + (L WI2 + L2W22 )(R2 + W22W21 R1 )

Ll (W - W1 2 W2 2 W2 1 )R 1 + (LIW12W2 2 + L2 ) (W2 1R1 + W2 2 R2 )

A + A2  ,say (4.5)

Clearly M(A1) c S , M(A1) c T . We shall show that M(A2) is

virtually disjoint with S and M(A;) with T . Let

A2x = (LlW1 2 + L2W2 2 ) (R2 + W2 2W2 1RI)x

= (LIW12 + L2W22 )y

be a vector in M(A2) n M(L1) I Then L2 2W2 2Y =

W2 2 Y = 0 W12Y = 0 on account of (4.4)

A2 X = 0 ,

That M(A2 ) is virtually disjoint with T is similarly estab-

lished. That the matrix A1 satisfies also the condition (4.2)

required of the C matrix and is the unique matrix to do so fol-

lows as in the proof of theorem 3.1(f).

Conversely suppose that there exists a unique matrix C satis-

fying (4.1) and (4.2). This implies that M(A - C) is virtually

disjoint with S and M(A - C ) with T . Let C L 11 

A - C = L2 1R2 1 be rank factorizations of C and A - C respec-

tively. Let the columns of L1 = (L11 :L1 2) provide a basis for

S and those of R1 = (1ll:Rl 2 ) a basis for T . Further let the

columns of (LI:L 2 1 :L22 ) form a basis of Em and those of

(R*:R 21 :R2 2 ) a basis for E . Let us write L2 for the matrix
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(L21 :L22 ) and R for the matrix (R2 1 :R22 ) . Clearly by

construction the matrices C and A - C are of the form
C=LW R , A-C=L
= LIWIIA = L22R which shows that in a repre-

sentation ofthe type (4.3) , W12 = 0 , W21 = 0 and the condi-

tion (4.4) is trivially satisfied.

In r17], Mitra and Trapp defined the generalized shorted

operator as the strong hybrid sum of A with the null matrix.

Theorem 4.1 is closely related with this definition. The

reader is also referred to Theorem 2 in Carlson [5] which con-

siders decompositions of the matrix A with a somewhat differ-

ent emphasis.

When A is a square matrix, that is m = n and S = ,

condition (4.4) is seen to be equivalent to the condition that

A be S complementable (Ando [4]) where S denotes the

orthogonal complement of S . Further

S(AIS,S) = A/S1

the generalized Schur complement. The verification is fairly

straightforward. For the case m # n , the notion could be

extended as follows:

Let M , N be given subspaces in Em,En respectively and

following Ando's notation let IM and IN denote respectively

the orthogonal projectors onto M and N under the respective

dot products.

Definition. The matrix A is said to be M,N complementable
cmxm ¢nx n

if there exists matrices M9 E , Nr  C such that

---------
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MtIM = MX , IlNr Nr (4.6)

I MAN = IMA , M AI N = AI N  (4.7)

When (4.6) and (4.7) are satisfied, we have

MA = M AN = ANr (4.8)

M ANr which clearly depends only on M,N and A is called

the Schur compression of A and denoted by AM,N A - MIANr

is called the generalized Schur complement of A and denoted

by A/MN *

Theorem 4.2. Let A be M,N complementable. Then

A = S(AIM ,N ) (4.9)

Proof: Observe that

IM(A - M9ANr) = IM(A - ANr) = 0

(A - MkAN r ) I N  (A - MA)I N = 0.

These show that

M(A/MN) C M M (A/IM.N)*l c N

Further if

M ANra- ANra e M(AMN) n M1

ANra = IMANra = 0 . This shows M(AMN) is virtually disjoint

with M . Similarly M[(AM N)*) is seen to be virtually dis-

_ .... .... .... mTIE
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joint with N1 • Hence AI/UI is seen to be the unique matrix

satisfying (4.1) and (4.2) with S M1  T N

For an application of Theorem 4.1 consider the following

problem. Let A,B c Cm x n  and A denote the matrix

AABA A A + B)

Put

S=M(O , T=

By Theorem 4.1, S(AIS,T) exists uniquely iff

M(A) c M(A + B) , M(A*) c M(A* + B*) , that is, if A and B

are p.s. Further, if this condition is satisfied

S(AIS,T) = A - A(A + BVA (P(AB) 0) (4.10)0 0 0 0

Anderson and Trapp [3] have used (4.10) to define the parallel

sum of hermitian n.n.d. matrices through the concept of a shorted

operator.
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5. Computation of the Shorted Matrix

Let A I Cmxn , X . cmxp y . Cq xn Let F denote the

matrix ) where 0 is the null matrix in Cq xp . The
Y 0

following result can easily be established. We omit the proof.

Lemma 5.1. Condition (4.4) is equivalent to each of the follow-

ing conditions.

(a) Rank F =Rank (A X) + Rank Y =Rank (A) + Rank X (5.1)

(b) M (A) M(F) , M(A c M(F*) (5.2)

Let G ( 2 {F-
(C3  -c4 )

Lemma 5.2. If condition (5.1) or equivalent (5.2) holds, then

(i) XC 3X = X, YC2Y = Y

(ii) YC1 X = 0 ,AC 1X = 0 , YCIA = 0

(iii) AC2Y = XC3A = XC4Y
2 3 4

(iv) ACACA = AC1 A , Tr AC 1 = Rank (AIX) - Rank X

= Rank (A = Rank Y

(v) (A:.A X) (A)-}}2 ) €

Proof: Lemma 5.2 except for the second part of (iv) follows from

the following equations

FGF = F (5.3a)

FG A) = (A) (5.3b)



21.

(A:.O)GF =(M~O) (5.3c)

the last two equations being consequences of (5.2).

Since G c {FI } C 3E {X-} IC 2 E {Y-}

Rank F =Rank FGTrFG Tr (AC I+ XC TrYC2

=Tr AC + Rank X + Rank Y.

The second part of (iv) therefore follows from (5.1)

Theorem 5.1. Let S = M(X) , T = M(Y*) .If condition (5.1) or

equivalently (5.2) holds, the matrix

XC Y AC Y=XCA (5.4)
4 2 3

is the unique shorted matrix (AIS,T)

Proof: (5.3b) =:,

AC A +XC A A (5.5)

Since A - XC 3 A= AC1A,it suffices to show that

M(AC 1A) n M(x) = {o} (5.6a)

M((AC A)*I n M(Y*) = {0} (5. 6b)

If AC1Aa =Xb -E M(AC1 A) n M(X) ,then

AC Aa = AC AC Aa = AC Xb =0 =D (5.6a).

(5.6b) is similarly established. The rest of the proof of Theorem

5.1 is similar to the proof of the 'if, part of Theorem 4.1.
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Remark 1. Lemma 5.2 for the special case where A is a real
X~1

symmetric n.n.d. matrix and Y = was found by Rao [18]

That C in such a case is a minimum A seminorm g-inverse of2

Y was shown in [19, Corollary 1, p. 47] . Using Theorem 2.1 of

Mitra and Pur [14] it is seen that AC2Y = S(A) where

S = M(X) It is remarkable that in the general case, the same

formula also provides the shorted matrix S(AIS,T) when in no

conceivable way, can C2 be interpreted a minimum A seminorm

g-inverse of Y

Remark 2. Formula (5.4) appears to be direct and therefore simplier

to compute compared to the expression given in Theorem 4.1, as it

does not require the identification of complementary subspaces of

S and T and determination of the W matrices in (4.3).

Theorem 5.2. Let the matrices A and B in Cmxn be p.s. and

in addition let (3.8) or equivalently (3.9) hold, then the matrix

F = satisfies condition (5.1) and if G ( ) {F}
B 0C 3 -C 4

then AC 2B = S(AIB)

Proof: Rank F = Rank = RankB 0 0 -B(A+B)-B

since (B*) c (A* + B*)

The RHS is further equal to

Rank (A + B) + Rank [B(A + B)-B] = Rank (A:B) + Rank B

= Rank + Rank B

B

The second part of Theorem 5.2 follows from Theorem S.1.
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6. Some Applications of the Shorted Matrix

a. Recovery of interblock information in incomplete block

experiments [6,9]

Consider a pair of consistent linear equations

Ax = a (6.1)

Bx = b (6.2)

and the combined equation

(A + B)x = a + b (6.3)

We shall assume that M(A) c M(A + b) so that the equations

(6.3) may be consistent whenever (6.1) and (6.2) are so. This

condition is satisfied for example when A and B are p.s.

matrices. The linear function p*x assumes a unique value for

every solution x of (6.1) iff

p E M(A*) (6.4)

Among such linear functions we are interested in identifying

those for which substitution of a solution of (6.3) or of (6.1)

leads toidentical answers. Such problems crop up in the theory

of recovery of interblock information in incomplete block exper-

iments where (6.1) and (6.2) are respectively the normal equa-

tions for deriving intra- and inter block estimates and (6.3)

is the normal equation for deriving combined intra- inter block

estimates. When S(AIB) exists, a neat answer is provided by

-
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Theorem 6.1.

Theorem F6.1. If S(AIB) = C exists, then

p(A +B) (a +b) = p Aa Va E M(A) ,bg EM(B) (6.5)

ffP E -( C) (6.6)

Proof: 'if part' .We note first that M(A* - C*) c t(

Let x 0  satisfy (6.1)

(A - C) A + B) (a + b)

= (A -C)(B +C+ A -C) [(A +B)x 0+ b -BxI0

= (A -C) (B + C + A -C) (A + B)x 0

since (B + C) and (A - C) are disjoint matrices and

b - Bx 0 E M(B) = M(B + C) .The RHS further simplifies to

(A-C)(A +B) (A +B)x 0  (A -C)x0

since M(A -C) c M(A) c M(A + B

'only if part'. (6.5)

p (A + B) b =0 V b M M(B)

*p (A + B) B =0 (6.7)

(6.4) =: p* = X*A for some X E E m (6.8)

Substituting (6.8) in (6.7) we have

X P(A,B) = 0 (6.9)

Since M[P(A,B)] =M[S(AIB)1, and A- c {C) , it follows that
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(6.9) X C = 0
= - Em

* *I - CA ] for some P E (6.10)

Hence p* =X*A= p*[I - CA-]A = P*(A - C) <* (6.6)

This concludes the proof of Theorem 6.1.

(b) Test of linear hypothesis in linear models

Let the random vector Y - N n(Xa 2 I) where 3 an m-tuple

is an unknown parameter vector and a2 > 0 is also an unknown

parameter. X is a known matrix.

Consider a hypothesis

H 0 : H3 = b (6.11)

We shall assume that the equation (6.11) is consistent. As other-

wise the hypothesis could be rejected without any formal statisti-

cal test. It was shown in [15] that when H is not estimable,

only the estimable part of (6.11) could be tested. To be more

precise, let K be a matrix such that

M(H'K') = M(H') n M(X')

where I on a matrix indicates its transpose. Then one could only

test if

KH = Kh (6.12)

and deviations from (6.11) that do not result in deviations from

(6.12) will go undetected. In the same paper the authors sug-

gested an expression for K One could alternatively use
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K = X'X(H'H + X'X) H'

in view of Theorem 2.2(f).

We shall however recommend

K = CHm

where C = X'X is the matrix of normal equations that provide

least squares estimates for the parameters 8 and Hm(C) is

a minimum C seminorm g-inverse of H.

Observe that

KH = S(C)

is the shorted matrix C where S = M(H') [121. The shorted

matrix is symmetric and

M(KH) = M(H'K') = M(H') n M(C) = M(H') n M(X')

Further the dispersion matrix D(KH) of the BLUE of KH is Ii

given by

D(KH) = [S(C)]C [S(C)]oG

= S (C) C
-22

Note that C-/ 2 is a g-inverse of this dispersion matrix. If

A
U = S(C)8 - g where g = CH h , we have the following simple

-. - m(C)

formula for computing the expression which appears in the numer-

ator of the variance ratio test. We note in this connection that

under H0 ,
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22
u'C U/0A 2

where x2  is a chi square random variable with the degrees

v

of freedom v = Rank S(C) = trace C- (C) . Since any routine

least square analysis of the data would provide C , C- and

CC , the suggested use of the shorted matrix is more attrac-

tive compared to alternatives proposed earlier. It requires

lesser number of additional matrix inversions, and as a by-

product gives Hm(c) which can be used to test the consistency

of the equation (6.11).
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